

Energia e Sustentabilidade

23 a 26 de novembro de 2004 - Campina Grande - PB

DETERMINAÇÃO DA ÁREA FOLIAR DA MAMONEIRA

Liv Soares Severino¹, Leandro Silva do Vale² Gleibson Dionízio Cardoso¹, Napoleão Esberard de Macedo Beltrão¹,. José Wellington dos Santos¹ (1): Embrapa Algodão, Rua Osvaldo Cruz, 1143, Centenário, 58107-720, Campina Grande, PB. e-mail: liv@cnpa.embrapa.br; gleibson@cnpa.embrapa.br; nbeltrao@cnpa.embrapa.br; jwsantos@cnpa.embrapa.br; (2) Aluno de graduação em Agronomia pela Universidade Federal Rural de Pernambuco, estagiário da Embrapa Algodão.

RESUMO

A medição da área foliar da mamoneira é dificultada pela falta de metodologia simplificada e pela grande variação de formatos da folha dessa planta. Neste estudo objetivou-se desenvolver um método simplificado para cálculo da área foliar da mamoneira a partir de medidas lineares de fácil obtenção. Foram analisadas 500 folhas, incluindo-se o máximo de variabilidade quanto a tamanho, idade e genótipos da planta. As folhas foram fotografadas por câmera digital e processadas no *software* ImageTool® para obtenção da área e das medidas lineares. Avaliaram-se quarenta modelos teóricos, escolhendo-se aqueles que resultaram em valores próximos à área foliar real e que se mostraram apropriados para folhas de vários tamanhos e de diferentes genótipos. A equação mais confiável foi a que utiliza os valores do comprimento da nervura principal e da nervura lateral: {área = 0,2439 x (nervura principal + média das nervuras laterais)^{2,0598}}

INTRODUÇÃO

Na experimentação agrícola, a medição da área foliar permite ao pesquisador obter indicativo de resposta de tratamentos aplicados e lidar com uma variável que se relaciona diretamente com a capacidade fotossintética e de interceptação da luz, interfere na cobertura do solo, na competição com outras plantas e em várias outras características.

Há diversas maneiras de se medir a área foliar das plantas, porém muitos métodos são inadequados por serem destrutivos e por depender de aparelhos que só estão disponíveis em laboratórios ou, ainda, por demandarem excessiva mão-de-obra para execução.

Para tornar mais fácil a obtenção da área foliar, geralmente são desenvolvidas relações matemáticas entre algumas dimensões das folhas e a área foliar total, de forma que a medida desejada possa ser obtida de maneira simples e sem dependência de aparelhos. Essas relações matemáticas já foram estudadas em diversas culturas (ASHLEY et al., 1963; OGA et al., 1994; SILVA et al., 1998; SILVA et al., 2002).

Nas folhas da mamoneira, a determinação de relações matemáticas entre a área e as medidas lineares é difícil devido à grande variação na forma dessas estruturas, pois ocorrem folhas com variado número de lóbulos e esses lóbulos variam quanto à largura entre diferentes genótipos ou até

Energia e Sustentabilidade

23 a 26 de novembro de 2004 - Campina Grande - PB

numa mesma planta. A aquisição de medidas lineares nessas folhas também se complica pela dificuldade de definir pontos referenciais claros que indiquem, por exemplo, onde medir o comprimento ou a largura, já que o formato irregular pode fazer com que essas medidas sejam ora superestimadas e ora subestimadas.

Objetivou-se no presente estudo, desenvolver equações matemáticas que relacionem a área foliar com medidas lineares de fácil obtenção e de localização objetiva e segura, sendo as equações pouco complexas, válidas para folhas de qualquer tamanho e de qualquer genótipo.

MATERIAL E MÉTODOS

Procurou-se trabalhar com o máximo de variabilidade possível. Para isso, analisaram-se 500 folhas provenientes de plantios experimentais das cultivares BRS 149 Nordestina e BRS 188 Paraguaçu, de uma variedade anã em processo de melhoramento genético pertencente ao banco de germoplasma de mamona da Embrapa Algodão e de mamoneiras asselvajadas encontradas em terrenos baldios na cidade de Campina Grande. Foram amostradas plantas de diferentes idades (desde uma semana até mais de um ano) e com grande intervalo entre a maior e a menor área foliar.

Cada folha foi fotografada em câmera digital, colocando-se um fundo branco para aumentar o contraste, inserindo-se também uma linha de referência de comprimento conhecido. As fotos foram transformadas para tons de cinza (8 bits) e então submetidas ao programa computacional ImageTool® (software de distribuição gratuita desenvolvido pela Texas Health Science Center) no qual se calibrou uma medida espacial utilizando-se a linha de referência presente em todas as fotos e se determinou o objeto a ser mensurado. Nesse programa computacional foram medidas a área da folha e tomadas as medidas lineares de: comprimento, largura, nervura principal, nervuras diagonais e nervuras laterais, conforme descrito na Figura 1.

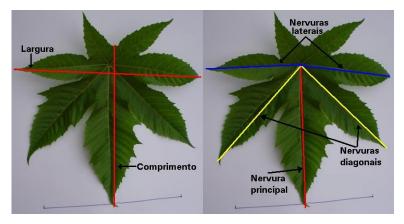
Foram idealizados 40 modelos matemáticos teóricos considerando-se comportamentos lineares, quadráticos e de potência em que as variáveis independentes foram consideradas isoladamente ou em combinação dupla ou tripla. Para cada modelo determinaram-se os coeficientes que melhor ajustaram a curva com os dados da área foliar, assim como o coeficiente de determinação (R²) de cada equação. Os cálculos foram feitos no programa Microsoft Excel® nos modelos que possuem um único coeficiente e no programa Statistica® nos modelos que possuem dois coeficientes.

As equações que obtiveram coeficiente de determinação (R²) inferior a 0,95 foram descartadas e as demais foram aplicadas aos dados divididos em classes de tamanho, objetivando-se encontrar equações apropriadas para folhas de qualquer tamanho. As três classes quanto ao tamanho foram: folhas pequenas (área < 300cm²), folhas médias (área entre 300cm² e 1.000cm²) e folhas

Energia e Sustentabilidade

23 a 26 de novembro de 2004 - Campina Grande - PB

grandes (área > 1.000 cm²). Cada equação foi então avaliada com relação às sete classes a que foram submetidas com base nos três indicadores que se seguem:


- a) coeficiente de correlação entre área real e área calculada;
- b) diferença percentual entre a média dos valores calculados e a média dos valores reais;
- c) Coeficiente de variação entre o valor real e o calculado (desvio padrão ÷ média)

Foram consideradas adequadas as equações que obtiveram coeficiente de correlação superior a 0,900, diferença percentual entre -5,0 e 5,0% e coeficiente de variação menor que 5,0%. A escolha das equações foi então complementada por critérios, como: facilidade de obtenção das medidas, facilidade de cálculo e número de medidas necessárias.

RESULTADOS E DISCUSSÃO

Na Tabela 1 estão apresentados os modelos matemáticos utilizados e seus coeficientes. Nenhuma das equações se mostrou apropriada para todas as classes segundo os critérios estabelecidos, devido à grande diferença entre o formato de folhas grandes e pequenas. As equações adequadas para folhas pequenas dificilmente se aplicam a folhas grandes. No entanto, podem ser escolhidas algumas equações que se mostraram razoavelmente apropriadas para todos os tipos de folha, como a { S = 0,2439 x (P + T)^{2,0898}} que foi considerada inadequada para folhas pequenas apenas por ter obtidos valores 7,45% maior que os valores reais.

O pesquisador que desejar utilizar outra equação, pode escolher uma entre aquelas listadas na Tabela 1, de acordo com o tipo de folha que irá trabalhar e pela facilidade na obtenção das medidas foliares, podendo ainda escolher uma fórmula baseada em uma única medida, desde que haja tolerância a maiores desvios do valor real.

Figura 1. Medidas lineares obtidas nas folhas de mamoneira: comprimento, largura, nervura principal, nervuras diagonais e

Energia e Sustentabilidade 23 a 26 de novembro de 2004 - Campina Grande - PB

nervuras laterais. Campina Grande, PB, 2003

Energia e Sustentabilidade

I CONGRESSO BRASILEIRO DE MAMONA

Energia e Sustentabilidade

23 a 26 de novembro de 2004 - Campina Grande - PB

Tabela 1. Avaliação de equações em três classes de folhas dividas por tamanho da área foliar. As células sombreadas correspondem às equações que se enquadraram nos critérios de avaliação previamente estabelecidos

Equação	Folhas pequenas			Folhas médias			Folhas grandes		
	Correl.	Δ (%)	CV (%)	Correl.	Δ (%)	CV (%)	Correl.	Δ (%)	CV (%)
S = 0,6119 x C x L	0,985	7,43	3,29	0,948	4,59	0,68	0,912	-3,23	0,91
$S = 0.7513 \times P \times L$	0,976	11,70	3,94	0,920	3,70	0,81	0,902	-3,19	0,95
$S = 1,4439 \times P \times T$	0,979	10,47	3,47	0,920	4,00	0,80	0,908	-3,24	0,94
$S = 1,0655 \times P^2$	0,947	37,05	4,99	0,876	0,18	0,96	0,892	-2,46	1,07
$S = 0.1515 \times (C + L)^2$	0,984	9,37	3,31	0,947	0,48	0,69	0,907	-3,33	0,93
$S = 0.2736 \times (C + T)^2$	0,987	10,59	2,56	0,921	3,82	0,79	0,880	-3,45	1,08
$S = 0.1812 \times (L + P)^2$	0,977	13,26	3,94	0,918	4,18	0,83	0,889	-3,52	1,02
$S = 0.3526 \times (T + P)^2$	0,976	17,64	3,55	0,919	3,55	0,80	0,915	-3,02	0,90
$S = 0.1867 \times (P + D + T)^2$	0,980	51,90	5,95	0,923	7,26	0,85	0,927	-4,40	0,87
$S = 0.3032 \times C^{2,238}$	0,979	-0,75	2,10	0,857	-0,65	1,13	0,825	3,61	1,73
$S = 2,9877 \times L^{1,5073}$	0,980	37,76	7,13	0,869	4,60	0,97	0,750	-20,75	2,38
$S = 0.2622 \times P^{2.4248}$	0,934	-0,80	3,72	0,873	-3,72	1,14	0,893	9,98	1,89
$S = 0.0134 \times D^{3.7564}$	0,965	-0,85	2,69	0,820	-6,26	1,41	0,885	17,79	2,73
$S = 7,0842 \times T^{1,5489}$	0,983	31,36	6,09	0,893	4,94	0,91	0,784	-19,75	2,25
$S = 0.2438 \times (C + L)^{1.8808}$	0,985	15,55	3,55	0,947	2,29	0,62	0,907	-9,52	1,24
$S = 0.2439 \times (P + T)^{2.0898}$	0,975	7,45	2,90	0,918	0,49	0,78	0,915	-2,81	0,92
$S = 0.2398 \times (L + P)^{1.9259}$	0,978	16,06	3,94	0,918	1,72	0,77	0,888	-8,23	1,22
$S = 0.0628 \times (P + D + T)^{2.2408}$	0,978	17,75	2,96	0,922	-3,12	0,76	0,928	-6,39	0,99
$S = C^{1,782} + L^{1,5642}$	0,987	50,30	6,29	0,939	11,81	0,97	0,901	-6,14	1,07
$S = P^{1,9455} + L^{1,442}$	0,970	50,44	6,13	0,907	6,68	0,90	0,912	-4,14	0,93
$S = P^{1,8494} + T^{1,8793}$	0,975	27,56	3,75	0,918	-2,92	0,77	0,916	-13,26	1,49
áa a; C m m	а	a; a	a a	a;	m m	а	v a	a; D n	n a

CONCLUSÕES

a : **T**

- Entre os modelos testados, a equação S = 0,2439 x (P + T)^{2,0898} é a mais confiável e segura para cálculo da área foliar da mamoneira (S= área; P=comprimento da nervura principal; T=média do comprimento das nervuras laterais);
- As equações S = 0,3526 x (P + T)² e S = 0,1515 x (C + L)² também são bastante confiáveis e de cálculo mais simples (S= área; P=comprimento da nervura principal; T=média do comprimento das nervuras laterais; C= comprimento; L=largura);
- As equações baseadas em uma única medida foliar não são confiáveis para o cálculo da área foliar da mamoneira, mas algumas delas podem ser utilizadas em determinações pouco exigentes em precisão, ou na qual se queira rapidez e praticidade em detrimento à exatidão do resultado.

REFERÊNCIAS

Energia e Sustentabilidade

23 a 26 de novembro de 2004 - Campina Grande - PB

ASHLEY, D.A.; DOSS, B.D.; BENETT, O.L. A method of determining leaf área in cotton. **Agronomy Journal,** v. 55, p. 584-585, 1963.

OGA, F.M.; FONSECA, C.E.L. Um método rápido para estimar área foliar em mudas de cagaiteira (*Eugenia dysenterica* D.C.). **Pesquisa Agropecuária Brasileira**, v. 29, n. 4, p. 571-577, abr. 1994.

SILVA, N.F.; FERREIRA, F.A.; FONTES, P.C.R.; CARDOSO, A.A. Modelos para estimar a área foliar de abóbora por meio de medidas lineares. **Revista Ceres** v. 45, n. 259, p. 287-291, 1998.

SILVA, L.C.; SANTOS, J.W.; VIEIRA, D.J.; BELTRÃO, N.E.M.; ALVES, J.; JERÔNIMO, J.F. Um método simples para se estimar área foliar de plantas de gergelim (Sesamum indicum). **Revista Brasileira de Oleaginosas e Fibrosas**. Campina Grande, PB. v. 6, n. 1, p. 491-496, jan-abr. 2002.

WENDT, C.W. Use of a relationship between leaf length and leaf área to estimate the leaf área of cotton (*Gossypium hirsutum* L.), castor (*Ricinus communis* L.) and sorghum (*Sorghum bicolor* L.). **Agronomy Journal**, v. 59, p. 484-486, set-out. 1967.